Prediksi Keterlambatan Pembayaran Sumbangan Pembinaan Pendidikan Sekolah Menggunakan Metode Naive Bayes
Keywords:
naive bayes, prediksi, spp, SMK Nahdlatuth ThalabahAbstract
Mengaplikasikan metode Naïve Bayes dilakukan dengan harapan dapat memprediksi adanya keterlambatan dalam pembayaran SPP. Adanya system tersebut sebagai jalan alternative apabila terjadi berbagai problema lain terkait keterlambatan pembayaran untuk sekolah. Maka pihak sekolah perlu memperoleh berbagai informasi terkait prediksi keterlambatan pembayaran SPP sehingga dapat mengambil tindakan alternative berbentuk pembinaan siswa-siswi atau orang tua yang diprediksi akan mengalami keterlambatan dalam pembayaran SPP. Hasil Penelitian ini adalah dengan adanya aplikasi kedepannya para Staff menjadi lebih cepat dalam input data, serta memproses klasifikasi keterlambatan pembayaran SPP. Menggunakan metode Naïve Bayes dalam aplikasi keterlambatan pembayaran SPP ini untuk menghindari terjadinya kesalahan dalam menentukan siswa keterlambatan pembayaran SPP. Dari hasil test Confusion Matrix, maka diperoleh jumlah True Negative sebanyak 11, dan False Positive sebanyak 2. Hasil True Positive sebanyak 12, dan False Negative sebanyak 5. Maka tingkat akurasi yang diperoleh menggunakan Algoritma Naïve Bayes sebesar 76,66%.
References
Abellán, J., & Castellano, J. G. (2017). Improving the Naive Bayes Classifier via a Quick Variable Selection Method Using Maximum of Entropy. Entropy, 19(6). https://doi.org/10.3390/e19060247
Abid Salih, A., & Abdulazeez, A. M. (n.d.). Evaluation of Classification Algorithms for Intrusion Detection System: A Review. Journal of Soft Computing and Data Mining, 2(1 SE-Articles), 31–40. https://publisher.uthm.edu.my/ojs/index.php/jscdm/article/view/7982
Alfi, R. N. (2020). Implementasi Naïve Bayes untuk Klasifikasi Tunggakan Iuran Sekolah. IJAI (Indonesian Journal of Applied Informatics); Vol 5, No 1 (2020)DO - 10.20961/Ijai.V5i1.45585 . https://jurnal.uns.ac.id/ijai/article/view/45585
Alfiansyah, D. M., & Soetanto, H. (2024). Prediksi Keterlambatan Pembayaran SPP Siswa dengan Pendekatan Metode Naive Bayes dan K-Nearest Neighbors. Building of Informatics, Technology and Science (BITS), 5(4 SE-Articles). https://doi.org/10.47065/bits.v5i4.4643
Cao-Van, K., Minh, T. C., Minh, L. G., Quyen, T. T. B., & Tan, H. M. (2024). Soft-Voting Ensemble Model: An Efficient Learning Approach for Predictive Prostate Cancer Risk. Vietnam Journal of Computer Science, 11(04), 531–552. https://doi.org/10.1142/S2196888824500155
Chen, L. (2024). Innovative Application of Data Mining Technology in College Information System Based on Informatized Teaching Environment. Applied Mathematics and Nonlinear Sciences, 9(1). https://doi.org/doi:10.2478/amns-2024-1613
Dangi, D., Dixit, D. K., & Bhagat, A. (2022). Sentiment analysis of COVID-19 social media data through machine learning. Multimedia Tools and Applications, 81(29), 42261–42283. https://doi.org/10.1007/s11042-022-13492-w
Darmayanti, E. P., & Fajri, I. N. (2024). Klasifikasi Penyakit Anemia Menggunakan Algoritma Navïe Bayes. IJAI (Indonesian Journal of Applied Informatics), 9(1). https://doi.org/10.20961/ijai.v9i1.94743
Gowda, S. R. S., Archana, B. R., Shettigar, P., & Satyarthi, K. K. (2022). Sentiment Analysis of Twitter Data Using Naïve Bayes Classifier. In A. Kumar, S. Senatore, & V. K. Gunjan (Eds.), ICDSMLA 2020 (pp. 1227–1234). Springer Singapore.
Ijomah, T. I., Idemudia, C., Eyo-Udo, N. L., & Anjorin, K. F. (2024). The role of big data analytics in customer relationship management: Strategies for improving customer engagement and retention. World Journal of Advanced Science and Technology, 6(1), 13–24. https://doi.org/10.53346/wjast.2024.6.1.0038
Jiang, L., Zhang, L., Li, C., & Wu, J. (2019). A Correlation-Based Feature Weighting Filter for Naive Bayes. IEEE Transactions on Knowledge and Data Engineering, 31(2), 201–213. https://doi.org/10.1109/TKDE.2018.2836440
Mishra, S., Kumar, R., Tiwari, S. K., & Ranjan, P. (2022). Machine learning approaches in the diagnosis of infectious diseases: a review. Bulletin of Electrical Engineering and Informatics, 11(6). https://doi.org/10.11591/eei.v11i6.4225
Moral-GarcÃa, S., Coolen-Maturi, T., Coolen, F. P. A., & Abellán, J. (2024). A Bayesian Imprecise Classification method that weights instances using the error costs. Applied Soft Computing, 165, 112080. https://doi.org/https://doi.org/10.1016/j.asoc.2024.112080
Oktavianto, H., Ayun, Q., Faruq, H. A. Al, Handayani, L., Lusiana, D., & Aj, M. F. A. H. T. B. (2024). The Effect of Laplace Smoothing on Naive Bayes for Sentiment Analysis of the Impact of the AstraZeneca Vaccine. 2024 Beyond Technology Summit on Informatics International Conference (BTS-I2C), 625–630. https://doi.org/10.1109/BTS-I2C63534.2024.10941727
Purnomo, D., Firgiawan, W., & Nur, N. (2025). Komparasi Algoritma Random Forest, Naïve Bayes, dan SVM pada Sentimen Kebijakan PPN 12%. Jurnal Tekno Kompak, 19(2 SE-Articles), 155–167. https://doi.org/10.33365/jtk.v19i2.122
Rao, W. (2024). Design and implementation of college students’ physical education teaching information management system by data mining technology. Heliyon, 10(16), e36393. https://doi.org/https://doi.org/10.1016/j.heliyon.2024.e36393
Sihombing, P. R., & Yuliati, I. F. (2021). Penerapan Metode Machine Learning dalam Klasifikasi Risiko Kejadian Berat Badan Lahir Rendah di Indonesia. MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, 20(2 SE-Articles), 417–426. https://doi.org/10.30812/matrik.v20i2.1174
Syabaniah, R. N., Riyanto, A., Adawiyah, H. R., & Nuryanti, N. (2020). Perancangan Aplikasi Pembayaran Sumbangan Pembinaan Pendidikan Pada Pondok Pesantren Terpadu Al- Istiqomah. Jurnal Ilmiah Media Sisfo, 14(2 SE-Articles), 71–82. https://doi.org/10.33998/mediasisfo.2020.14.2.720
Wickramasinghe, I., & Kalutarage, H. (2021). Naive Bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation. Soft Computing, 25(3), 2277–2293. https://doi.org/10.1007/s00500-020-05297-6
Xu, S. (2018). Bayesian Naïve Bayes classifiers to text classification. Journal of Information Science, 44(1), 48–59. https://doi.org/10.1177/0165551516677946
Zhang, H., Jiang, L., & Webb, G. I. (2023). Rigorous non-disjoint discretization for naive Bayes. Pattern Recognition, 140, 109554. https://doi.org/https://doi.org/10.1016/j.patcog.2023.109554
Published
How to Cite
Issue
Section
Copyright (c) 2025 J-STEM: Journal of Science, Technology, Engineering, and Mathematics

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


