Implementation of Data Mining Using the K-means Clustering Method to Determine Types of Eye Disease at Wuluhan Health Center

Authors

  • Mike Yurike Dita Deviyati Universitas Muhammadiyah Jember
  • Hardian Oktavianto Universitas Muhammadiyah Jember
  • Guruh Wijaya Universitas Muhammadiyah Jember
  • Nur Qodariyah Fitriyah Universitas Muhammadiyah Jember
  • Dudi Irawan Universitas Muhammadiyah Jember

Keywords:

data mining, K-Means, eye diseases, cluster

Abstract

The eyes are one of the most important human senses and have received world attention. All human activities which are basically based on receiving visual information require special attention. Data regarding visual impairment throughout the world is based on WHO estimates. Eye health is an important aspect in human health. Eye vision problems such as: glaucoma, cataracts, pseudochaphia, conjunctivitis, macular degeneration, diabetic retinopathy etc. are serious problems that will affect an individual's quality of life. Located at the Wuluhan Community Health Center with patient complaint attributes (anamneses) and eye examinations carried out at the Wuluhan Community Health Center eye clinic. From the results of this assessment, types of eye diseases were grouped, namely glaucoma, conjunctivitis and cataracts. The algorithm used is the K-Means Clustering algorithm and there are 6 attributes for each type of disease. The eye disease data used was 110 patient data, the data testing results were obtained using a 2 cluster to 4 cluster scenario and calculating the Devies-Bouldin Index (DBI) value. The K-Means algorithm calculation for data grouping was carried out for each cluster. For the type of glaucoma disease, the best cluster was in cluster 3 with a DBI value of 1.3232. In terms of conjunctivitis, the best cluster is in cluster 4 with a DBI value of 1.3901. For this type of cataract disease, the best cluster is in cluster 3 with a DBI value of 0.51249

References

Abdurrauf, M. (2016). Konjungtivitis Bakteri Akut. Jurnal Kedokteran Syiah Kuala, 16, 181–184.

Ahmad Fauzi, I., & Danar Dana, R. (2023). Implementasi Data Mining Clustering Dalam Mengelompokan Kasus Perceraian Yang Terjadi Di Provinsi Jawa Barat Menggunakan Algoritma K-Means. Jurnal Riset Ilmu Manajemen Dan Kewirausahaan, 1(4).

Anindya Khrisna Wardhani. (2016). Implementasi Algoritma K-Means Untuk Pengelompokkan Penyakit Pasien Pada Puskesmas Kajen Pekalongan. Jurnal Transformatika, 14, 30–37.

Aulia, S. (2021). Klasterisasi Pola Penjualan Pestisida Menggunakan Metode K-Means Clustering (Studi Kasus Di Toko Juanda Tani Kecamatan Hutabayu Raja). Djtechno: Jurnal Teknologi Informasi, 1(1), 1–5. https://doi.org/10.46576/djtechno.v1i1.964

Benri, M., Metisen, H., & Latipa, S. (2015). Analisis Clustering Menggunakan Metode K-Means Dalam Pengelompokkan Penjualan Produk Pada Swalayan Fadhila. Jurnal Media Infotama, 11(2), 110–118. https://core.ac.uk/download/pdf/287160954.pdf

Kurnia, F., Fahmi, I., Wahyudi, E., & Mige, G. E. S. (2019). Penerapan Algoritma K-Means Untuk Pengelompokan Diagnosa Penyakit Mata Berdasarkan Rentang Usia. Jurnal Spektro, 2(1), 10–17.

Mardi, Y. (2017). Data Mining : Klasifikasi Menggunakan Algoritma C4.5. Edik Informatika, 2(2), 213–219. https://doi.org/10.22202/ei.2016.v2i2.1465

Nairda, D. P., Informatika, F., Telkom, U., Informatika, F., Telkom, U., Tujuan, B., & Hipotesis, C. (2023). Klasifikasi Keparahan Penyakit Glaukoma pada Citra Fundus Retina dengan Deep k-Nearest Neighbor. 10(6), 5404–5409.

Ordila, R., Wahyuni, R., Irawan, Y., & Yulia Sari, M. (2020). PENERAPAN DATA MINING UNTUK PENGELOMPOKAN DATA REKAM MEDIS PASIEN BERDASARKAN JENIS PENYAKIT DENGAN ALGORITMA CLUSTERING (Studi Kasus : Poli Klinik PT.Inecda). Jurnal Ilmu Komputer, 9(2), 148–153. https://doi.org/10.33060/jik/2020/vol9.iss2.181

Saputra Sy, Y. (2022). Klasterisasi Pasien Rawat Inap Peserta BPJS Berdasarkan Jenis Penyakit Menggunakan Algoritma K-Means. Jurnal Sistim Informasi Dan Teknologi, 5, 33–37. https://doi.org/10.37034/jsisfotek.v5i2.162

Setiawan, R. (2016). Penerapan Data Mining Menggunakan Algoritma K-Means Clustering Untuk Menentukan Strategi Promosi Mahasiswa Baru ( Studi Kasus : Politeknik Lp3i Jakarta ). Jurnal Lentera Ict, 3(1), 76–92.

Sundari, S. S., Agustin, Y. H., & Rihadisha, A. (2022). Rancang Bangun Aplikasi Sistem Pakar Diagnosa Penyakit Mata Berbasis Web Dengan Metode Forward Chaining Dan Case Based Reasoning (Studi Kasus : Poli Mata RSIA Widaningsih Tasikmalaya). E-Jurnal JUSITI (Jurnal Sistem Informasi Dan Teknologi Informasi), 11(01), 91–100. https://doi.org/10.36774/jusiti.v11i1.914

Yunita, F. (2018). Penerapan Data Mining Menggunkan Algoritma K-Means Clustring Pada Penerimaan Mahasiswa Baru. Sistemasi, 7(3), 238. https://doi.org/10.32520/stmsi.v7i3.388

Published

2025-03-28

How to Cite

Deviyati, M. Y. D., Oktavianto, H., Wijaya, G., Fitriyah, N. Q., & Irawan, D. (2025). Implementation of Data Mining Using the K-means Clustering Method to Determine Types of Eye Disease at Wuluhan Health Center. J-STEM: Journal of Science, Technology, Engineering, and Mathematics, 1(1), 1–16. Retrieved from https://ejurnal.espublisher.org/index.php/j-stem/article/view/13